3.451 \(\int \frac {x^7}{\sqrt {1+x^3}} \, dx\)

Optimal. Leaf size=262 \[ \frac {80 \sqrt {x^3+1}}{91 \left (x+\sqrt {3}+1\right )}+\frac {2}{13} \sqrt {x^3+1} x^5-\frac {20}{91} \sqrt {x^3+1} x^2+\frac {80 \sqrt {2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {40 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}} \]

[Out]

-20/91*x^2*(x^3+1)^(1/2)+2/13*x^5*(x^3+1)^(1/2)+80/91*(x^3+1)^(1/2)/(1+x+3^(1/2))+80/273*(1+x)*EllipticF((1+x-
3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*2^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1+x)/(
1+x+3^(1/2))^2)^(1/2)-40/91*3^(1/4)*(1+x)*EllipticE((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)-1/
2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 262, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {321, 303, 218, 1877} \[ \frac {2}{13} \sqrt {x^3+1} x^5-\frac {20}{91} \sqrt {x^3+1} x^2+\frac {80 \sqrt {x^3+1}}{91 \left (x+\sqrt {3}+1\right )}+\frac {80 \sqrt {2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {40 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}} \]

Antiderivative was successfully verified.

[In]

Int[x^7/Sqrt[1 + x^3],x]

[Out]

(-20*x^2*Sqrt[1 + x^3])/91 + (2*x^5*Sqrt[1 + x^3])/13 + (80*Sqrt[1 + x^3])/(91*(1 + Sqrt[3] + x)) - (40*3^(1/4
)*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sq
rt[3] + x)], -7 - 4*Sqrt[3]])/(91*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) + (80*Sqrt[2]*(1 + x)*Sqrt[
(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(91
*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
 b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin {align*} \int \frac {x^7}{\sqrt {1+x^3}} \, dx &=\frac {2}{13} x^5 \sqrt {1+x^3}-\frac {10}{13} \int \frac {x^4}{\sqrt {1+x^3}} \, dx\\ &=-\frac {20}{91} x^2 \sqrt {1+x^3}+\frac {2}{13} x^5 \sqrt {1+x^3}+\frac {40}{91} \int \frac {x}{\sqrt {1+x^3}} \, dx\\ &=-\frac {20}{91} x^2 \sqrt {1+x^3}+\frac {2}{13} x^5 \sqrt {1+x^3}+\frac {40}{91} \int \frac {1-\sqrt {3}+x}{\sqrt {1+x^3}} \, dx+\frac {1}{91} \left (40 \sqrt {2 \left (2-\sqrt {3}\right )}\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx\\ &=-\frac {20}{91} x^2 \sqrt {1+x^3}+\frac {2}{13} x^5 \sqrt {1+x^3}+\frac {80 \sqrt {1+x^3}}{91 \left (1+\sqrt {3}+x\right )}-\frac {40 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {80 \sqrt {2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{91 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 42, normalized size = 0.16 \[ \frac {2}{91} x^2 \left (10 \, _2F_1\left (\frac {1}{2},\frac {2}{3};\frac {5}{3};-x^3\right )+\sqrt {x^3+1} \left (7 x^3-10\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^7/Sqrt[1 + x^3],x]

[Out]

(2*x^2*(Sqrt[1 + x^3]*(-10 + 7*x^3) + 10*Hypergeometric2F1[1/2, 2/3, 5/3, -x^3]))/91

________________________________________________________________________________________

fricas [F]  time = 0.81, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {x^{7}}{\sqrt {x^{3} + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(x^7/sqrt(x^3 + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{7}}{\sqrt {x^{3} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^7/sqrt(x^3 + 1), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 198, normalized size = 0.76 \[ \frac {2 \sqrt {x^{3}+1}\, x^{5}}{13}-\frac {20 \sqrt {x^{3}+1}\, x^{2}}{91}+\frac {80 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \EllipticE \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \EllipticF \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{91 \sqrt {x^{3}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(x^3+1)^(1/2),x)

[Out]

2/13*x^5*(x^3+1)^(1/2)-20/91*x^2*(x^3+1)^(1/2)+80/91*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x
-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/
2)*((-3/2-1/2*I*3^(1/2))*EllipticE(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)
))^(1/2))+(1/2+1/2*I*3^(1/2))*EllipticF(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^
(1/2)))^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{7}}{\sqrt {x^{3} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^7/sqrt(x^3 + 1), x)

________________________________________________________________________________________

mupad [B]  time = 0.99, size = 239, normalized size = 0.91 \[ \frac {2\,x^5\,\sqrt {x^3+1}}{13}-\frac {20\,x^2\,\sqrt {x^3+1}}{91}-\frac {80\,\left (\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-\left (-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}}{91\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(x^3 + 1)^(1/2),x)

[Out]

(2*x^5*(x^3 + 1)^(1/2))/13 - (20*x^2*(x^3 + 1)^(1/2))/91 - (80*(((3^(1/2)*1i)/2 - 1/2)*ellipticF(asin(((x + 1)
/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)) - ((3^(1/2)*1i)/2 - 3/2)*elli
pticE(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))*((3^(1/2)
*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)
*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2))/(91*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)
/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2))

________________________________________________________________________________________

sympy [A]  time = 1.44, size = 29, normalized size = 0.11 \[ \frac {x^{8} \Gamma \left (\frac {8}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {8}{3} \\ \frac {11}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {11}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(x**3+1)**(1/2),x)

[Out]

x**8*gamma(8/3)*hyper((1/2, 8/3), (11/3,), x**3*exp_polar(I*pi))/(3*gamma(11/3))

________________________________________________________________________________________